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Abstract 
Cancer metastasis is the most important prognostic factor 
determining patient survival, but currently there are very few drugs or 
therapies that specifically inhibit the invasion and metastasis of cancer 
cells. Currently, human cancer metastasis is largely studied using 
transgenic and immunocompromised mouse xenograft models, which 
are useful for analysing end-point tumour growth but are unable to 
accurately and reliably monitor in vivo invasion, intravasation, 
extravasation or secondary tumour formation of human cancer cells. 
Furthermore, limits in our ability to accurately monitor early stages of 
tumour growth and detect micro-metastases likely results in pain and 
suffering to the mice used for cancer xenograft experiments. 
Zebrafish (Danio rerio) embryos, however, offer many advantages as a 
model system for studying the complex, multi-step processes involved 
during cancer metastasis. This article describes a detailed method for 
the analysis of human cancer cell invasion and metastasis in zebrafish 
embryos before they reach protected status at 5 days post 
fertilisation. Results demonstrate that human cancer cells actively 
invade within a zebrafish microenvironment, and form metastatic 
tumours at secondary tissue sites, suggesting that the mechanisms 
involved during the different stages of metastasis are conserved 
between humans and zebrafish, supporting the use of zebrafish 
embryos as a viable model of human cancer metastasis. We suggest 
that the embryonic zebrafish xenograft model of human cancer is a 
tractable laboratory model that can be used to understand cancer 
biology, and as a direct replacement of mice for the analysis of drugs 
that target cancer invasion and metastasis.
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distant spread, based on initial local invasion, entry into the 
vascular or lymphatic system, survival in those fluid chan-
nels followed by extravasation and colonisation in a distal site  
(Massagué et al., 2017). However, this orderly progression 
is not borne out by current research and the mechanisms of  
metastatic spread remain controversial. The role of epithelial to  
mesenchymal transformation (EMT) is unclear and plasticity of  
cells that metastasise and their relationship to the primary tumour 
cells, e.g. stem cells, remains the object of current research  
(Pandya et al., 2017). Furthermore, cancers do not appear to  
disseminate randomly, but exhibit tropism for specific organs,  
especially lung, liver and bone (Tarin, 2011). This observa-
tion, made over 100 years ago by Steven Paget, led to the “seed 
and soil” hypothesis which remains unproven. In clinical prac-
tice, surgical resection or local treatment of primary tumours 
is effective, but metastases remain difficult to treat. This is 
particularly evident for melanoma, where localised and slow- 
growing metastatic deposits can appear long after apparent cure  
(Gershenwald & Scolyer, 2018). Similarly, in prostatic cancer 
the primary site is rarely a clinical problem in comparison to 
the pain and pathological fractures from osteolytic vertebral  
deposits (Akakura et al., 1996).

Understanding the multi-step processes that regulate cancer 
metastasis will likely result in new therapeutics to benefit patients 
with a wide range of cancers at different stages of progres-
sion. Although in vitro systems, e.g. the artificial skin model for 
melanoma (Hill et al., 2015) can be highly effective for studying 
primary tumour behaviour, connected organ systems are needed 
to understand metastasis. The mouse has traditionally been  
used as a pre-clinical model organism to study cancer under 
the rationale that they are a mammalian species, with the same 
organ systems as humans. Although genetically modified  
animals do spontaneously develop tumours, the introduction of 
human tumour cells into other species, xenografting, is a vital 
pre-clinical tool that enables researchers to study tumour metas-
tasis and evaluate drug responses (van Marion et al., 2016).  
Xenografts provide greater experimental control and can  
provide a direct translational link to the patient, particularly  
when the developmental origin of cancer remains unknown. How-
ever within a mouse, metastatic spread from xenografts often  
occurs late, well after the primary deposit has become distressing 
to the animal, and further pain can also result from the aggres-
sive invasive nature of the metastases (Gómez-Cuadrado et al., 
2017). Highly metastatic cell lines are often used to acceler-
ate the development of metastatic tumours, but these may not 
reflect normal metastasis, and therefore several different lines  
must be used, requiring many more animals (Cruz-Munoz et al., 
2008). It is sometimes possible to surgically remove the primary 
tumour prior to analysis of metastatic dissemination (Srivastava 
et al., 2014); however, this is often associated with excessive tis-
sue damage requiring prolonged post-operative analgesia. Direct  
injection of cancer cells into the tail vein (Elkin & Vlodavsky,  
2001; Minn et al., 2005), heart (Kang et al., 2003), illiac artery  
(Bos et al., 2009; Wang et al., 2015), spleen (Morikawa et al., 
1988), peritoneum (Chu et al., 2015) or tibia (Fisher et al., 2002) 
have all been used to model local metastatic behaviours, but the 
mouse model is limited since metastasising single cells cannot 
be tracked and only relatively large metastatic growths can be 

Research highlights

Scientific benefit(s): 

•   �Optimal xenotransplantation can be performed in zebrafish 
embryos at 48 hpf, allowing for a 72-hour period to model 
key stages of metastatic behaviour.

•   �Metastatic processes can be visualised at the single cell 
level.

3Rs benefit(s): 

•   �Zebrafish embryos can be used to replace mouse xenograft 
models in early cancer metastasis research.

Practical benefit(s): 

•   �Only a small number of cancer cells (100–200 cells per fish) 
are required.

•   �Use of fluorescent cell markers in conjunction with 
transgenic zebrafish lines allows for host cells to be 
distinguished from human cancer cells in real-time/in situ, 
avoiding the need for post-mortem immunocytochemistry.

•   �The zebrafish embryo assay is higher-throughput than 
mouse xenograft models.

Current applications: 

•   �Studying tumour invasion and metastatic dissemination 
of different human cancer cell lines using time-lapse 
microscopy.

•   �Studying the invasion of human cancer cells into zebrafish 
blood vessels and in the formation of secondary tumours.

Potential applications: 

•   �Studying the heterogeneity of tumours and cooperation of 
different cancer cells from patient-derived tumours.

•   �Studying the remodelling of the extracellular matrix during 
tumour invasion.

•   �As a screening assay to identify new agents/drugs that 
reduce the metastatic behaviour of cancer cells.

Introduction
Metastasis is a clinical term describing the spread of tumour 
cells from a primary location to distant sites. It is suggested 
that more than 90% of deaths from cancer are not caused by the 
primary tumour but by the direct effects of metastatic depos-
its and from the metabolic burden of a rapidly growing tumour  
cell mass (Jemal et al., 2011). Traditionally an orderly cascade 
of cellular behaviours was presumed to underlie the progres-
sion from a well circumscribed and localised tumour growth to  

            Amendments from Version 1

The new version of this article has been updated to, confirm 
details of when and how the experiment is terminated; reference 
FIJI imaging software as a method of analysis; emphasise 
the importance of establishing a baseline for the invasion of 
different cancer cell lines and the use of tracer beads to evaluate 
movement associated with organ development; reference other 
uses of this model such as analysis of angiogenesis or cancer cell 
proliferation; document product codes of important materials used; 
and confirm details of how 3D printed moulds were created. A new 
version of Supplementary File 1 has been provided. Figure 3 has 
also been updated to account for the different analysis used.

See referee reports

REVISED
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detected, precluding study of the earliest metastatic events. Fur-
thermore, mouse models have also had limited success when 
predicting anti-cancer drug efficacy in human trials (Day  
et al., 2015; Kersten et al., 2017).

The zebrafish is a tropical bony fish which for over 30 years has 
been increasingly used in developmental biology and human  
disease modelling as it contains almost all human organ systems 
except lungs (Penberthy et al., 2002). The zebrafish genome 
has been sequenced and there is a high degree of conserved 
genes and genetic signalling pathways compared to humans  
(Howe et al., 2013). Importantly for the study of cancer metas-
tasis, embryos are completely transparent, facilitating imaging 
at single cell level within developing organs whilst also imaging 
the entire animal. Furthermore, the majority of studies can be 
carried on early-stage embryos before they are capable of inde-
pendent feeding, which for the zebrafish is widely considered  
to be 5 days post fertilisation (dpf), and protected under the 
Animals (Scientific Procedures) Act (ASPA) and EU Direc-
tive (2010/63/EU). The extra-uterine development of hundreds 
of eggs also permits a greater number of studies in genetically 
identical organisms. Since the first reported xenotransplantation 
of human cells into zebrafish (Lee et al., 2005), many laborato-
ries have shown that zebrafish embryos are useful for the study of  
other facets of tumour biology including cancer-induced ang-
iogenesis (Britto et al., 2018; Haldi et al., 2006; Nicoli et al., 
2007); cancer cell invasion and metastasis (de Boeck et al.,  
2016; Marques et al., 2009); cancer stem cell growth (Bansal  
et al., 2014; Chen et al., 2017); interaction of cancer cells with 
the host (Feng & Martin, 2015); and drug screening (Corkery  
et al., 2011; Gibert et al., 2013). Importantly, the develop-
ment of human tumours and their response to chemotherapeutic 
treatment in zebrafish embryos is comparable to that observed 
in mouse xenograft assays (Fior et al., 2017). Additionally,  
while mouse xenograft models require immuno-deficient mice 
to prevent immune-rejection of the human cancer cells, the 
lack of a mature adaptive immune system within zebrafish 
embryos up to 14 dpf allows analysis of human cancers without  
rejection (Lam et al., 2004).

In this article we describe the techniques for performing embry-
onic zebrafish xenograft experiments and demonstrate the  
utility of using zebrafish embryos as a model system for study-
ing human cancer metastasis, in particular metastatic melanoma 
and prostate cancer. We highlight the advantages over mouse 
xenograft models and provide a practical experimental protocol 
showing how zebrafish embryos can be used as a replacement 
for mice to conveniently study metastatic tumour behaviour in  
the laboratory.

Methods
A full step-by-step protocol can be found in Supplementary File 1.

Zebrafish husbandry
Transparent Casper Tg(kdrl;GFP) zebrafish were housed under 
standard conditions at 28.5°C (Westernfield, 2000). All animals 
were maintained under UK Home Office project licence  
604548 according to the requirements of the Animals (Scientific 

Procedures) Act 1986 of the UK Government and conformed 
to Directive 2010/63/EU of the European Parliament. Zebrafish 
eggs were collected by timed pair mating and incubated in E3 
media at 28.5°C in air until 48 hours post fertilisation (hpf). A 
completed ARRIVE checklist can be found in Supplementary  
File 2. Embryos are maintained under anaesthesia where appro-
priate and killed prior to 120 hpf using a schedule 1 method. 
For individual embryos this can be through destruction of the 
brain using forceps, or for larger numbers destruction of the  
brain  can be assured using a polythene rolling pin.

Human cell culture
Human melanoma cells A375 (American Type Culture Collec-
tion (ATCC), Manassas, USA; RRID, CVCL_0132), as well 
as C8161 (RRID, CVCL_6813) and WM164 (RRID, CVCL_
7928) (generously gifted by Professor Meenhard Herlyn, The  
Wistar Institute, Philadelphia, USA), or PC-3M-Pro4-mCherry 
prostate cancer cells (ATCC; RRID, CVCL_D579), were incu-
bated at 33°C for 24 hours to precondition cells prior to stain-
ing with 1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine  
perchlorate (DiI; Vybrant red fluorescent dye; Invitrogen, Paisley,  
UK) and injection into zebrafish embryos.

Injection of cancer cells into zebrafish embryos
Zebrafish embryos at 2 dpf were immobilised using 1.2 mM 
tricaine methanesulfonate, which is a water soluble, fast-acting 
anaesthetic agent. Zebrafish embryos were then embedded in 
a thin film of low-melting-point agarose to stabilise the fish in 
a lateral position. To investigate invasion of cancer cells from 
the extravascular compartment into the vasculature, approxi-
mately 250 Dil-labelled melanoma cells in a volume of 5 nl 
were injected into the inferior section of the yolk sac. Similarly,  
to investigate tissue tropism of cancer cells, 250 DiI-labelled 
prostate cancer cells in a volume of 5 nl were injected into the 
vein of Cuvier. Following injection, fish were carefully removed 
from the agarose/tricaine solution using Dumont No5 fine  
forceps and transferred individually into 96-well plate imag-
ing chambers created from 1% agarose using 3D printed pins  
(Wittbrodt et al., 2014). Minor orientation was required and 
embryos were suitable for microscopic analysis within 2 hours of  
injection.

Confocal microscopy
Confocal images (250 μm total z-depth) of each fish were  
captured at 0, 24 and 72 hour time points, or every 15 mins for 
5 hours for time-lapse imaging, using an inverted Leica SP8  
confocal microscope (Leica Microsystems, GmbH Heidelberg, 
Germany) at 405 nm (blue FluoSpheres), 488 nm (green blood  
vessels) and 564 nm (red cells). The movement of DiI-positive 
melanoma cells was analysed using Volocity 3D Image Analysis  
Software (Volocity 6.3; PerkinElmer, Waltham, Massachusetts, 
USA) by manually measuring the two-dimensional distance 
moved by individual melanoma cells from site of injection. This 
analysis could alternatively be performed using ImageJ to meas-
ure the calibrated pixel distance. The number of RFP-expressing  
prostate cancer cells was analysed using ImageJ software  
version 1.8.0_112 (https://imagej.nih.gov/ij) to quantify the total 
area and intensity of RFP fluorescence.
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Statistical analysis
For the analysis of tissue-specific homing of prostate cancer 
cells, 2 dpf zebrafish embryos from a pool of embryos derived 
from several mated adult zebrafish pairs were randomly assigned 
to receive an injection of PBS, or an injection of cancer cells, 
into the vein of Cuvier. The experimental unit is the individual 
zebrafish embryo, and a sample size of 4 embryos per group 
was selected on the basis of a normal standard deviation set  
at 95% confidence level (z = 1.96), a confidence interval (c) 
of 0.05 and assuming an effect size of 90% (p = 0.9) based on 
pilot experiments, according to the formula: n = (2z(p)(1-p))/2c. 
Measurement of total RFP-fluorescence within confocal images 
was performed and analysed using two-tailed Student’s t-test by 
a second researcher using GraphPad Prism 7 software (Graph  
Pad, San Diego, CA USA).

Results
Local non-vascular metastatic spread
The initial event in metastatic spread is the movement of an 
individual cancer cell from the tumour niche. This can be mod-
elled using in-vitro systems such as skin organoids or the Dunn 
chemotactic chamber, but neither of these assays are suitable 
for measuring metastasis. In our zebrafish embryo xenograft 
model, we inject small deposits of fluorescently labelled human  
cancer cells into the yolk sac at 2 dpf, and track individual cells  
until 5 dpf (Figure 1A). By using a zebrafish line with absent 
pigmentation it is possible to achieve excellent views throughout 
transgenic embryos with GFP-labelled endothelial blood vessels 
(green; 510 nm emission), ensuring injection of DiI-labelled A375  

melanoma cells (red; 565 nm emission) into the extravascular 
compartment (Figure 1Bi), which directly migrate to peripheral 
sites (Figure 1Bii. Although embryos are normally allowed to 
develop at 28.5°C and human cells at 37°C, a compromise at 
33°C works well. The movement of individual melanoma cells 
from site of injection can be measured using ImageJ or Volocity  
image analysis software (Figure 1C).

Intravasation of metastatic cells
The ability to carry out time-lapse imaging on embryos affords 
the opportunity to examine individual cell movement. Injected 
embryos were lightly anaesthetised using tricaine and orien-
tated in low-melting-point agarose. By focusing on the point of 
injection, DiI-labelled melanoma cells were visualised moving 
through the extravesicular compartment within the yolk sac 
of zebrafish embryos using low-voltage time-lapse confocal  
microscopy (Figure 2A and Supplementary Movie 1). A 3D- 
rendering of the confocal image z-stack was rotated to reveal the 
transverse section of the blood vessel showing a melanoma cell 
positioned between the zebrafish endothelial cells, indicating 
that this cell is directly within the blood vessel (Figure 2Ax  
and Supplementary Movie 2).

Metastasis and the endothelium
Haematological or lymphatic metastatic dissemination requires 
interaction with the endothelium during entry and exit. How-
ever, patients can also have cancer cells circulating in their 
blood that do not necessarily show metastases (Reymond et al., 
2013). It is now recognised that metastasising cells exhibit 

Figure 1. Schematic of xenograft assay and analysis of cell migration. A) Site-specific injection (depicted into the yolk sac) of DiI- or 
RFP-labelled (Red) cancer cells in 5 nl PBS into 2 dpf zebrafish embryos is followed by incubation of zebrafish for 72 hours at 33°C and 
subsequent imaging analysis of invasion and metastatic dissemination of cancer cells. B) Approximately 250 DiI-labelled A375 melanoma 
cells 0 hrs (Bi) and 72 hrs (Bii; white arrows indicate position of melanoma cells) after injection into the yolk sac of Tg(kdrl-GFP) Casper 
zebrafish (Green blood vessels). C) Confocal z-stack images are used to visualise red DiI fluorescence of melanoma cells within zebrafish 
(Ci) and the distance from injection site measured using Volocity image analysis software (Cii); Scale bar = 500 μm.
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sticking and rolling as they interact with the endothelium, and  
surface molecules such as selectins and CD44 are implicated.  
The zebrafish embryo xenograft model shows potential to be 
an extremely powerful tool in understanding the relationship 
between the surface biology of tumour and endothelial cells. 
Time-lapse confocal microscopy at 15-minute intervals read-
ily captured melanoma cells as they demonstrated sticking 
and rolling behaviours on the surface of vascular endothelium  
(Figure 2B and Supplementary Movie 3) clearly suggesting a 
specific interaction of the human melanoma cells with zebrafish 
endothelial cells.

Tumour cells can also be directly injected into the circulation of 
developing zebrafish via the vein of Cuvier providing a tractable 
model of metastatic cancer cell-endothelial interaction during  
vascular exit. This is particularly important in some tumours 
that do not readily enter the vasculature, but do have tissue 
tropic exit routes. For example, the prostate cancer cell line  
PC-3M-Pro4-mCherry does not metastasise from the yolk sac, 
but when injected into the circulation these cells seed in the  
caudal hematopoietic tissue of the zebrafish tail where they 
proliferate, suggesting a specific microenvironmental niche  
favourable for tumour development (Figure 3A, B).

Heterogeneity of metastatic cell behaviour
A specific benefit of embryonic zebrafish over other larger  
preclinical laboratory models is that several experiments can be  
carried out in parallel on the same microscope stage. This 

allows screening of a library of pharmacological candidates, 
but importantly evaluation of different metastatic cell types, 
which may be primary cell lines derived directly from patients.  
This is important as heterogeneity between or within patient  
tumours may be important in metastatic behaviour. We have seen 
this in our own melanoma work, where C8161 cells dissemi-
nated widely throughout the yolk sac (Figure 3C) while WM164 
cells formed a localised tumour-like mass with fewer melanoma 
cells invading the yolk sac (Figure 3D). Co-injection of tracer 
beads can be used to distinguish passive developmental associ-
ated movement from active migration and invasion of cancer 
cells. Metastatic A375 cells were found in the distal tail vessels, 
whilst very few C8161 and WM164 cells were found in the tail 
and other regions of the zebrafish by 72hpf, indicating C8161 and  
WM164 cells have a reduced capacity to invade blood vessels, 
which may limit their metastatic potential.

These vital imaging-based assays used in combination with the 
ability to genetically modify zebrafish or apply pharmacological 
agents represent important new tools and approaches to understand 
these metastatic processes at a cellular level.

Dataset 1. Raw images used to generate figures shown in this 
study

https://dx.doi.org/10.5256/f1000research.16659.d221978

Shown are images for Figures 1 and 3; images in Figure 2 were 
obtained from stills of Supplementary Movies 1-3.

Figure 2. Single cell tracking by time-lapse confocal microscopy. Ai–ix) Confocal z-stack images taken at 15 minute intervals showing 
an individual DiI-labelled A375 melanoma cell (white arrows) migrating within the yolk sac of a casper zebrafish embryo and interacting with 
a GFP-tagged blood vessel. Ax) 3D-render of image Aix rotated to show the transverse section through the GFP-tagged blood vessel with 
DiI-labelled melanoma cell indicated by white arrows. Bi–v) Confocal z-stack images taken at 15 minute intervals showing an individual  
DiI-labelled melanoma cell (white arrows) within the GFP-tagged blood vessels of a casper zebrafish embryo. Scale bar = 150 μm.
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Discussion
We and others have shown that xenotransplantation of human 
cancer into zebrafish embryos can be optimally carried out at 
48 hfp when gastrulation is complete and the main body plan of 
the animal is established. The next 72 hours provides sufficient 
time frame to model key stages of metastatic behaviour, includ-
ing local invasion, vascular entry, circulation and vascular exit. 
In this paper we have demonstrated how tumour invasion and/or 
metastatic dissemination by human cancer cells can be monitored 
through time-lapse microscopy. Most importantly, metastatic proc-
esses of single cells can be visualised at the earliest time points, 
which is not possible in a mouse model. The zebrafish embryonic  
xenograft of human cancer therefore directly replaces the need 
for using mouse xenografts and avoids welfare concerns asso-
ciated with mouse models, including pain and suffering due 
to unexpected or excessive primary tumour growth. In the UK 
alone, it is estimated that over 550,000 mice are used each year  
for cancer research (UK Home Office statistics). On average  
50 mice are used per study of cancer metastasis, and over the 
past 5 years there have been on average 900 publications per 
year in this area. We therefore estimate that 45,000 mice are 
used each year for research of cancer metastasis using mouse 
xenograft models, many of which could be replaced by embryonic 
zebrafish at unregulated stages of development, using the model 
described in this paper. To do this several historical concerns  
need to be addressed.

Experimentally, it is essential that following xenotransplanta-
tion human cells can be distinguished from host cells of the 
zebrafish. Whilst this can be achieved post-mortem by detecting 
human-specific antigens using immunocytochemistry (Bentley  
et al., 2015), the use of lipophilic fluorescent cell membrane 
stains in conjunction with zebrafish transgenic lines allows  
visualisation of cells both during time-lapse imaging and after 
tissue fixation. These methods provide equivalent quantification  
of xenografted cancer cell proliferation (Bentley et al., 2015).

It might be suggested that differences in cell size, microenvi-
ronmental niches and molecular signalling pathways between 
human patients and preclinical models (mice as well as zebrafish) 
could limit the relevance and translational value of data obtained 
from animal studies. However, our studies show that human 
cancer cells are able to invade zebrafish blood vessels and form  
secondary tumours, which can be inhibited by specific autophagy 
inhibition (Verykiou et al., 2018); while previous studies have 
shown that VEGF and CXCR4 signalling are conserved between 
human cancers and zebrafish (He et al., 2012; Tulotta et al.,  
2016). Nevertheless, further studies to characterise the response  
of human cells in the zebrafish model organism are required.

The future direction of research using zebrafish embryos for 
human xenograft studies will likely focus on strategies and 
methods to increase assay throughput and improve analysis of 

Figure 3. Representative confocal z-stack images of kdrl-GFP casper zebrafish embryos 72 hours after injection with human cancer 
cells. A) PC-3M-Pro4-mCherry prostate cancer cells injected into the duct of Cuvier form tumours in the caudal hematopoietic tissue of 
the zebrafish tail; Scale bar = 150 μm. B) Quantification of total mCherry fluorescence by prostate cancer cells after 1 and 3 days post 
injection; n=4, *p<0.01, 0.05 CI, paired t-test. Ci–ii) C8161 and Di–ii) WM164 melanoma cells (stained with Red DiI dye) injected alongside 
FluoSpheres (Blue) into the yolk sac survive and invade throughout the yolk sac; Scale bar = 500 μm.
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large data sets. These objectives will benefit from a number of 
technical innovations, such as devices to orientate the zebrafish 
for imaging (Wittbrodt et al., 2014) as well as automated  
quantification and analysis of tumour cell dissemination (Ghotra  
et al., 2012; Heilmann et al., 2015). The analysis of in-situ  
cancer cell proliferation could be improved by using techniques 
such as EdU incorporation or use of a transgenic cell cycle  
reporter such as FUCCI within cancer cells (Haass et al., 2014)

Stable cancer cell lines are often dramatically different from 
patient tumour cells and by definition have been selected for 
ease of maintenance in the laboratory environment. However, 
it is likely that heterogeneity and cooperation of cancer cells in 
patient tumours drives tumour invasion through remodelling of 
the extracellular matrix (Chapman et al., 2014). Thus, cancer is 
represented by cells that vary in their proliferative, invasive and 
metastatic phenotype, which contributes both to tumour growth 
and also emergence of drug resistance (Anderson et al., 2011).  
However, it is often not feasible to investigate the effect of 
tumour cell heterogeneity in mouse xenograft models as large 
numbers of patient primary tumour cells are required for  
successful engraftment. In contrast, a major advantage of the 
embryonic zebrafish xenograft assay is the capacity to accurately  
detect and monitor a small number of cells (100–200 cells per  
fish), including low-number cancer subpopulations such as  
cancer stem cells, drug-resistant cells or primary patient tumour 
tissue where only small numbers of cells can be recovered  
e.g. circulating tumour cells. Patient-derived tumour xenograft 
models are therefore a potential solution to the problem of lim-
ited intratumoural heterogeneity of cell line derived xenografts, 
which may also improve the accuracy of tumour drug-response  
studies.

It is becoming increasingly clear that no single pre-clinical model 
can substitute for actual human trials, and therefore as research-
ers we must continually reassess and adapt our model assays to 
improve their relevance, which will likely involve employing 
an approach that combines multicellular in vitro organoid 
assays (Hill et al., 2015) with both zebrafish and mouse in vivo  
studies. We suggest that this combinatorial approach will reduce 
the reliance on mouse xenograft models for the study of human 
cancer metastasis and drug screening. However, the challenge 
for translational cancer research will be to integrate the multitude 
of data from different model organisms to identify evolutionary 
conserved drug-tumour interactions between species so that 
we may select the most appropriate therapeutics that have the 
highest chance of providing an effective treatment for patients  
with cancer.

Data availability
Dataset 1. Raw images used to generate figures shown in this 
study. Shown are images for Figure 1 and Figure 3; images in 
Figure 2 were obtained from stills of Supplementary Movie 1– 
Supplementary Movie 3. DOI: https://doi.org/10.5256/
f1000research.16659.d221978 (Hill et al., 2018).
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Supplementary material
Supplementary File 1. Complete step-by-step protocol for Zebrafish xenograft of human cancer cells.

Click here to access the data

Supplementary File 2. Completed ARRIVE checklist.

Click here to access the data

Supplementary Movie 1. Representative time lapse confocal movie showing active invasion of a DiI-labelled A375 melanoma cell 
through the yolk sac and into a kdrl-GFP labelled blood vessel of a Casper zebrafish embryo.

Images were taken every 15 minutes for 5 hours.

Click here to access the data

Supplementary Movie 2. 3D rendering of confocal movie showing active invasion of a DiI-labelled A375 melanoma cell through the 
yolk sac and into a kdrl-GFP labelled blood vessel of a Casper zebrafish embryo.

Transverse field of view through the blood vessel demonstrates that the red melanoma is within the green blood vessel and actively moving 
against the flow of blood.

Click here to access the data

Supplementary Movie 3. Representative time lapse confocal movie showing movement of a DiI-labelled A375 melanoma cell through 
a kdrl-GFP labelled blood vessel of a Casper zebrafish embryo.

Images were taken every 15 minutes for 5 hours.

Click here to access the data
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Zebrafish embryo xenograft model is a widely adopted method to study many aspects of cancer 
cell behaviour in vivo. A variety of protocols that differ by injection site, incubating temperature 
and down stream phenotype chosen, have been used in the field. So far, there is still a lack of a 
publicly available, detailed standard protocol, which new users could follow. The current 
methodology paper provides a very detailed, easy to follow protocol for xenograft fluorescent 
labeled cancer cells in the yolk sac and vein of Cuvier in 2 days old embryos and how to monitor 
cancer cell dissemination following the graft to assess their metastasis potential. This paper would 
be of benefit to anyone who wants to try out the zebrafish embryo xenograft model. 
The step by step protocol could include more details that would make it more user friendly for 
someone who is new to fish models. 
 
Material section:

It would help if more details were given for the following reagents such as Cat number 
because there could be multiple products available under a similar name: Low-melting point 
agarose, Borosilicate glass capillaries, Ultrafine forceps. What size?, 96-well plate. Are these 
with a glass bottom?

1. 

3D printed mould to create imaging chambers – this is referred to in another paper without 
any details given. Perhaps they could expand on how they made it or obtained it? The 
imaging chamber is a key aspect and for this protocol to be “high through-put” more details 
would really help the reader.

2. 

Protocol steps
Once embryos transferred into imaging chamber, the authors indicate that the embryos will 
be maintained in 150 ml 1X E3 media containing 1.2 mM tricaine for 72 hours. This could 
have detrimental effects on embryos. The authors should comment on whether any adverse 
effects were observed and how to avoid them.

1. 

One of the Optional steps: “Tracer beads can be used to label the original injection site and 
to distinguish active tumour cell migration from passive development associated movement 
that occurs when tissues and organs within the yolk sac grow.” To my mind it is very 

2. 
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important for the initial set up of the model, as different cancer cell lines display different 
metastasis capacities and the tracer beads can be found expanding from the original 
injection site due to various reasons that the authors pointed out. So the use of tracer bead 
would help to set up a baseline index for passive expansion, true cancer cell invasion and 
metastasis that can then be evaluated according to the baseline parameter. The authors 
could perhaps comment more on their experience of using tracer beads in the main text of 
the paper.

The main text of the paper 
 
In the main text the authors nicely presented three examples of what biological features can be 
captured using confocal imaging analysis following graft. It would be very helpful if they could 
elaborate more on each of the models, presenting more details on what parameters could be 
established from each model. 
Model 1 (figure 1 Cii) cancer cell dissemination. It seems that 2D distance is used instead of 3D and 
there is no mention of the size of each cell cluster that appeared to be metastatic growth. The 
authors should explain more extensively why they choose such a parameter and whether there 
are other potential parameters that one could measure to assess dissemination of cancer cells. 
 
Model 2 (figure 2) intravasation and distal metastasis are extremely rare events according to other 
publications (Roh-Johnson M, et al), perhaps authors could comment on how frequently they can 
capture intravasation or cancer cells within blood vessels? Perhaps provide some information on 
their experience with different cell lines in their intravasation capacity. 
 
Model 3 (Figure 3 A,B) injecting into the vein of Cuvier is similar to mouse tail vein injection where 
cancer cells are grafted directly into the blood stream. This allows for study of the capacity of 
cancer cell extravasion and proliferation in distal tissues to establish metastic growth. Data 
presented in (Figure 3 A, B) using fluorescent intensity as read out for cancer cell proliferation 
(same for C, D), which is quite a crude way of quantification. I wonder if it is possible to use more 
precise methods such as EdU incorporation or pH3 staining, ki67 staining or PCNA staining? 
Perhaps authors could share their experiences of make some comments on other ways of 
evaluating the cancer cell proliferation in vivo after xenograft.   
 
The authors focused on using the zebrafish xenograft models for metastasis analysis. 
Angiogenesis was one the first assays developed using zebrafish embryo xenograft model (Nicoli 
S, et al). As a methodology, the protocol presented here can be adapted for angiogenesis analysis. 
Perhaps they could comment on how their protocol could be adapted for evaluating angiogenesis 
in vivo. There are new developments of the zebrafish embryo xenograft model for angiogenesis 
such as (Britto DD, et al) perhaps they could refer to this work in the introduction or discussion, so 
as to guide the reader to other and more specific examples. 
 
 
Are a suitable application and appropriate end-users identified? 
Yes 
 
If applicable, is the statistical analysis and its interpretation appropriate? 
Partly 
 
Are the 3Rs implications of the work described accurately? 
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Yes
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 29 Nov 2018
David Hill, Newcastle University, UK, Newcastle upon Tyne, UK 

The authors would like to thanks Dr Feng for her insightful comments and suggestions. We 
detail below the additions and changes we have made specifically in response to this 
review:

We have incorporated all changes as suggested including: catalogue numbers of 
critical reagents and reference to angiogenesis; and mention of alternative post-
mortem analyses for cell proliferation.

1. 

Whilst we have only observed local movement of tracer beads, we have emphasised 
the importance of this quality control in the main manuscript.

2. 

For these studies we chose to analyse movements in a single plane and were able to 
find significant differences. However, with increased imaging time and use of lenses 
with limited depth of field, cells can be tracked in three dimensions. Caution should 
be employed as the light exposure in obtaining such image stacks may affect cell 
behaviour.

3. 

The capability of cancer cells to invade blood vessels was cell line dependent, for 
example, more than 80% of embryos injected with A375 cells had cancer cells within 
the blood vessels by 72 hours, while C8161 and WM164 cells invaded blood vessels 
less frequently and also showed variable local movement. These preliminary studies 
indicate the utility of the zebrafish at pre-regulated embryonic stages to study key 

4. 
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aspects of metastatic cancer spread.
 

Competing Interests: No competing interests were disclosed.
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© 2018 Hurlstone A. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Adam Hurlstone  
Division of Cancer Studies, School of Medical Sciences, Faculty of Biology, Medicine and Health, 
The University of Manchester, Manchester, UK 

I enjoyed reading this methodology paper which lays out clearly steps required to achieve 
successful xenotransplantation in zebrafish embryos and how subsequent growth and 
dissemination of cancer cells can be monitored. 
  
The attached method protocol would be improved by inclusion of the below details:

Explain how to remove embryos from agarose using forceps○

Indicate an appropriate model of microtitre plate for imaging purposes with an inverted 
microscope (does imaging require glass bottom plates or a certain grade of plasticware?)

○

Specify where they obtained the plastic pin mold: have they manufactured it, requested it, 
or purchased it?

○

Comment on whether 72 h incubation in anesthetic is detrimental to embryo 
health/development

○

Which image analysis modules/tools were used in Velocity and Image J. Mention whether 
default parameters were selected or otherwise? Why 2D rather than 3D distances were 
calculated using Velocity? Velocity is relatively expensive proprietary software and may not 
therefore be widely accessible, whereas Image J is free. Could the whole analysis not be 
undertaken with Image J?

○

Specify an appropriate method of ensuring destruction of the embryos within 120 hpf○

 Turning to the rest of the manuscript:
Explain what metrics would be captured by the analysis depicted in Fig 1B and present a 
representative graph. Mean/median migration distance? Is there a way of distinguishing 
between several small clusters of cells or a few larger ones?

○

Specify the cell line used for Fig 2. How efficient is the model for capturing intravasation 
events? How many cells are captured intravasating per hour per embryo?

○

The presentation and analysis of data in Fig 3B is inappropriate as these are not 
independent populations of cells. A line graph and linear regression is the appropriate 
analysis. Does proliferation contribute to the expansion of cells in the caudal hematopoietic 
tissue?

○
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It would be of value to include a statement describing the distribution of fluospheres 
injected either into the yolk or into the duct of cuvier 
 

○

Are a suitable application and appropriate end-users identified? 
Yes 
 
If applicable, is the statistical analysis and its interpretation appropriate? 
Partly 
 
Are the 3Rs implications of the work described accurately? 
Yes
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 29 Nov 2018
David Hill, Newcastle University, UK, Newcastle upon Tyne, UK 

The authors would like to thanks Dr Hurlstone for his thorough and inciteful review of our 
article.

We have made suggested changes to clarify methodology and correct typographical 
errors in our article, including details of consumables and of pin-mould manufacture. 
Importantly, applying forceps to break the agarose away from the embryo allows its 
release into surrounding media. Toxicity of tricaine was not observed in our studies, 
but if there are concerns it should be excluded with a specific experimental control. 
Embryos were killed using a schedule 1 method (destruction of the brain). However, 

1. 
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for post-mortem histological analysis, cooling and fixation in 4% PFA was also used.
Whilst we used commercially available software, we also recommend use of the Fiji 
implementation of imageJ (https://fiji.sc/), which contains tools for measurement and 
tracking.

2. 

The cell line used for Figure 2 was the parental A375 human melanoma cell line. We 
have modified the figure legend to reflect this.

3. 

We have updated our analysis of Figure 3B to reflect that the same cell populations 
are measured at two time points by using a paired t-test rather than a student’s t-test, 
and have updated Figure 3 and the legend for Figure 3 accordingly.

4. 

We have also included a reference (Verykiou et al., 2018) in the main text. We have 
used this method of analysis to measure the distance invaded by MEKi-resistant A375 
melanoma cells. The use of nuclear-localised fluorescent proteins allow individual 
cells within a cluster to be distinguished, while the use of membrane dyes are ideal 
for analysis of primary tumour cells, low-number tumour subpopulations and 
transient events such as intra/extravasation or interaction of tumour cells with host 
cells and stroma.

5. 

 

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

 
Page 16 of 16

F1000Research 2018, 7:1682 Last updated: 29 SEP 2020

https://fiji.sc/
mailto:research@f1000.com

